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ON THE UNSTEADY THREE-DIMENSIONAL BOUNDARY LAYER
FREELY INTERACTING WITH THE EXTERNAL STREAM’

0. S. RYZHOV

Asymptotic equations that define unsteady processes in a three-dimensional boundary
layer with self-induced pressure are derived. The pressure gradient under condit-
ions of free interaction is, as usually, calculated not by the solution of the ex-
ternal problem of flow over a body, but on the assumption that it is due to growth
of streamline displacement thickness near the body surface. Besides the principal
terms, terms of second order of smallness are retained in asymptotic sequencies. If
the characteristic dimensions of the free interaction region are the same in all
directions in the plane tangent to the body surface, the system of equations defin-
ing the thin layer next to the wall must be integrated together with the systemwhich
defines the nonviscous stream.

1. The external stream. We assume that under conditions of free interaction between
an unsteady three-dimensional boundary layer and the external stream three regions with essent-
ially different properties are formed, as happens in plane-parallel flows. As the basis of
our mathematical analysis we take the concepts of the nonlinear theory of perturbations first
formulated in connection with the investigation of steady separation /1—6/, and subsequently
extended for application to processes with time dependent parameters /7-—11/. According to
that theory the effects of viscosity and thermal conductivity are small and there are no vort-
ices in the upper region 1. The effect of dissipative factors can also be neglected in the
middle region 2, although the velocity field is essentially turbulent. 1In region 3, the thin
layer next to the wall, viscosity always plays the predominant part in the formation of flow,
while the effect of thermal conductivity is secondary, provided the gas temperature varies
within fairly narrow limits and, consequently its compressibility virtually does not manifest
itself.

We use the notation: ! for time, z,y, z for Cartesian coordinates, v,,v,, and v, for
velocity components along these axes, p for density, p for pressure, and A% for the first
viscosity coefficient. Parameters of the unperturbed gas are denoted by the subscript oo. We
assume for simplicity that the gas flows along a plate at velocity U, and the Mach number

M. differs from unity by a finite magnitude. We introduce the small parameter ¢ = Re™',
with the Reynolds number Re calculated with the use of the first viscosity coefficient and
distance | from the plate leading edge. We locate the axes z and z in the plane subjected
to flow with the Z-axis coinciding with the velocity vector of the stream flowing from infinity.

We begin by analyzing the external region 1 where the flow is laminar. Assuming the im-
portance of all Cartesian coordinates to be equivalent, we set here

t=LU.(ty + ey), 2 = L (1 + &%zy), y = e’Ly,, z = ez, (1.1)
and expand the unknown functions in asymptotic series
Ve = Ux (1 + uyy + uy, + .10), vy = Uy (B0 + p5+...), (1.2)

v, = Ua (ezwu + anlz + o) P = P 1+ £2pn -+ Sapm—"...),
P = Px + p<UsM(e?py + &ppt ...)

where ¢, Z1, Y1, 21 are the arguments of functions U Ui, Wiy, Pryy Pri =12, ...).

We substitute formulas (1.1) and expansions (1.2) into the system of Navier—Stokes equa-
tions and collect terms with like powers of & For the first approximation functions we ob-
tain

Gy, iy . Gry LT uyy apy uyy apn dwy |, Opy s 0p P
i T T e T e =0 T =0 g =0, =0, Migp—=0 .3
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740 0. S. Ryzhov

It is important that all equations of system (1.3) do not contain derivatives with re-
spect to time. This means that the external inviscid stream is inert, momentarily adjusting
itself to the perturbations which usually occur in problems on free interaction in region 3
close to the wall. The second approximation functions satisfy the nonhomogenecus system of
linear equations

9 . Oy, vy drw Oy , Suw g foe  Oun gy L Ope oy duww Oy dwy 1.4
9z, | or, ' Oy ' 05 ot 0T, N aty, ' or ¢ oy oty 1 TEr, U Ter, T Th (1.4)
s @p .
j ——— e by S
L dry dey 0

The homogeneous system correspending to it coincides with gystem {1.3). Time appears
only in the right-hand sides of Egs.(1.4) in whose solutions it is also contained as a para-
meter.

Let us partly integrate the system of Egs.(l.3) and (1.4), assuming that all unknown
functions tend to vanish as Zy— — 00, I3, ly, 7; = const and  y; - + o0, &y, %y, z; = const. The first
of these systems yields

é‘p @2 #¢,
} i! Py o T8 Pn

2
e , tusse— Py, pu=Mipn (1.5

xt xl

a
=y S Pultu & g a1 dE, w“"‘"‘"”"_a" \ Pulty %y, 21) df

-

For a plane-parallel supersonic stream with /8% =0 and M, 1 the general solution
of the wave equation is determined by the Delambre’'s formula. From this follows the relation

Pu (1 20, 0) = (MF — 1) vy (b, 2, 0) (1.86)

between the perturbed pressure and the transverse component of the velocity vector when y; = 0.
For a plane-parallel subsonic stream with 4/ds, =0 and W, <! we obtain Neuman's problem
for the Laplace equation whose solution is sought in the half-plane y > 0. 1In that case we
have
1 w
P11 {t1, Ty, O} == “"'7(1 — Ay \ Md& (1.7

I~
3

When the thermodynamic functions and the velocity field depend on all three space vari-
ables z, y, z formulas (1.8} and (1.7) are no longer valid. As will become clear subsequently,
the absence of simple expressions for the parameters of gas in the external stream makes it
impossible to formulate separately the boundary value problem for the region next to the wall
of the three-dimensional boundary layer.

The result of partial integration of the system of equations for second approximation fun~
ctions shows that

#2pyy 20y a2 32 2
£ "' + ”**__211;37’%“-, oy == M2 pya, uummp,w_ \ Py dE (1.8)
s % & x4 = o 3
tr=— \ PedE 61,9 \ 5 Pudidl, ii‘ié*“‘"———- ig predf + az o 5 5 pudidl

where 1y, §, ¥,,%, are the arquments of functions /P fr: of the integrands.

1f a plane~parallel stream is supersonic, both functions py, and v are solutions of
wave equations with a right-hand side. For a plane parallel subsonic stream it is possible to
formulate Neuman's problem for the Poisson's equation whose solution is to be determined in
the upper half-plane y > 0. In both cases formulas linking pg (fu 2, ) with vy (1, 2, 0} and
first approximation functions on line y, ={ exist /11/. But such relations do not exist for
the three-~dimensional boundary layer.

2. The intermediate region. We pass to the investigatiun of region 2 which consti-
tutes the basic region of the boundary layer. In spite of possibility of neglecting viscous
stresses and the heat flux, the velocity field in this region contains vortices already in the
first approximation. The scales of time and coordinates are specified by formulas

£ o LilUs {tg+ €%0), =L (1 + &), y = 'Ly, o = 6Lz, (2.1

Expansions
Ve = U (Uy (g2) + ety + Ehuge — ...), vy = Ue (8%0m) -+ ey + ..1) 2.2)



On unsteady boundary layer interacting with external stream 741

v, = Us (€% + €Uy + ...), p = po (R (¥2) — €pa1 + €20 + ...) , P =P pUa?(epy + €ps + ...)

are valid for the parameters of gas. The arguments of functions Uy Uy, Wy, Pa;. Py (P = 1, 2..0)
are Iy, Tyy Yoo by

The comparison of formulas (l1.1) and (2.1) indicates, first of all, that i=ly 2, =z,
and I; = 2, but ¥ 7 Y. The importance of Cartesian coordinates in region 2 is no longer
eguitable, since the chracteristic length in the direction normal to the plate has been select-
ed equal to the thickness of the unperturbed boundary layer. Structure of the latter is ob-
tained from the Blasius solution /12/ merging with which for z,—> — o0,1s, y,, 2, = const
enables us to establish the form of functions U,(y,) and H,{y,). Note that transverse and
lateral components v, and v, af the velocity vector,respectively, are of comparable magnit-
ude, and the perturbations of longitudinal velocity components considerably exceed them in
the order of their amplitude.

The substitution of formulas (2.1) together with expansions (2.2) in the systemof Navier
— Stokes equations yields for the principal terms

Fun O bvy , .. dR, fun oy, U L (2.3
R(‘_ﬁfc -+ U"_—'_&zz TRO‘EE'TIiI'?'y'T:O, U, 922 + v e =0, -(;.;;'—0

Robyo%+%=0y Uo%%j+vel%f=0

There are again no derivatives with respect to time in all equations of system (2.3). In
the first approximation oscillations in the basic part of the boundary layer are instantane-
ously transmitted from point to point. Only in the thin layer next to the wall can the flow
have an essentially unstable character.

The fourth equation of system (2.3) is separated from the remaining which are integrated
independently of it. The integral of the fourth of Egs.(2.3) is determined after a solution
is obtained for functions uy, v, p, and p,;. That solution defines the structure of the plane-
parallel stream. This enables us to conclude that it is possible to superpose perturbations
in the sideways direction on any two-dimensional boundary in the plane tangent to the surface
of the body, without any disturbance in the fields of other gas parameters. The three-dimen-
sional boundary layer in region 2 differs from the two-dimensional one only by the presence
of a velocity component in the direction of the :z ~axis, which is determined by the pressure
distribution.

For the correction terms in expansion (2.2) we obtain the nonhomogeneous system of equa-
tions

R 2 1 1, Mt Rog r-u—'f—,’;—:"-=—i§§:~————-"‘:;;j-" — et — RS (2.4)
RoU, 0:;.: +Rol‘2~.-‘;—z:'=—-30-%:f——— ?:‘: — Ryug, ?I: — Ry ad';? . %:—ROUO%
Rllo S22 + 2% = — Ry B2 Ry 4 Uopr) G2 — Rovy G2
Uo%f—-f‘ 1«'22%=—2%§——Un zsn +AI§RoU0%—Un%

The corresponding homogeneous system, although of the form of system (2.3), is linear.
Time appears only in the right-hand sides of Eqs.(2.4), hence in their solutions it represents
a parameter. The parametric time dependence is thus distinctive feature of expansions that
define the perturbed stream field in the upper region 1, as well as in the intermediate region
2.

The fourth of Egs.(2.4) can be separated from the remaining which constitute a closed
system which differs from that corresponding to the two-dimensional boundary layer only by
the term —R,du, /0z; in the right-hand side of the first of its eguations.

Passing to the integration of the last two systems of equations, we stipulate the damp-
ing of perturbations in region 2 at infinity upstream of the flow. For the principal terms
we have the explicit formulas

ar’ Ay 5- daR,
un=d1—7%, ta=——="Uo(ye), pn=4, 4, (2.5)
dy. 0z, dy..
1 s ¢
Pay == pay ({2, To, 2o},  Woy == — R G Teln o5 S 21 {l9, & 20) dE

The arbitrary function A;(t:, Z,.2,) satisfies the condition A;—~0 for zx— — oo. i,
S, = const. The meaning of this simple solution is that the streamline in the boundary layer is
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displaced, and at each gross section 3 = const the momentary magnitude of the latter in the
two-dimensional stream, which is the basis for the construction the three-dimensional veloc-
ity field, is obtained by the substitution of y, <+ 24, {l, z., 2z} EOr y, in the Blasius solu-
tion. oo )

The system of Eqs.{2,4) can be partly integrated, Taking inte account the explicit form
of solution for first approximation functions, we obtain

u:
> Mi wr Mgt 3
ey == Paa {ta, Ta, O 20} -5 {&‘:—— \ __—«{;}»Eﬂ;idy}} %, M3y = MO3R, (9) U () (2.6}
a ~ !
- 2h 7 84 a4, 4T - Je. a ¥
Ugg == i Uy ot, “'Jx-—;ifw«-m”——. s ‘.(:Ui — ’i)—a_i;’. e 5 pnd%} -

-
~

E23

[} a 1 .
J]'gUu[ LS + ]S[ _mmin.. ) ity g8 Doy 1 P

Teo T m ) PR | T e = MU+ g | et

Xy

X
i B dpn . B4 3 ¢ .
\ Dy dgs Wy d9s 5{3 T T 3 Pnﬂség—
~x

X:
By, AP ify, 20, %) i @ ¢ RN 1 2B,
[l N 3t 1 Zi S e e # Hs
Rolg—7= 7% oy g ) PadE S
—

Vo2 \
P4y YOME — Mot ()
EPCTS [’J* - 5 d"l
[ 3

M2
_ L dudy dR, By & Pl
14 ai}?'_f,.v, A i 3 ¥ L 153 3 Brx . 4 Ay + R, 4y 48,
BT ™ o Gy T MR 2R Ao 5{“‘ Tl e

where 1, £, 2, are the arguments of function py of the integrand, and the arbitrary func-
tion A, (l, %s, 2,) satisfies the condition that A, - when =z, - o0, 4,3, = const,

3. The layer next to the wall. Let us proueed now with the analysis of region 3
where viscosity has the predominant effect on the velocity field strxucture. In that region
it is necessary to set

e LIUL (2, — %), v=L{1 = ), y=2Lly,;, 2=z 3.1}
and write the expansions of gas parameters in the form

Ve s Uy (BUugy + g ~+ .0, vy = U (8%, - €'y +00)y Ve = U (Bl + 8%wg + 10), (2.2)

== Ps 6931 -+ gy + ~N); P = Px + f)\r{‘rxxz {gngx 4 s”pgxg — )

where fy, % ¥ Z; are the arguments of functions s Vas Wsiv fore Pae (= 1 20000

The comparision of formulas (1.1), (2.1}, and {(3.1) shows that L =L =i 3 =H =3
and 5, == 34 = 23, but y, %y, %= y,, which is natural, since the characteristic dimensions of
all three regions in directions lying in the plane under the stream are the same, and the time
count in these is carried out in the same way. As regards the scale in the trangverse direc-
tion to the plate, these in conformity with basic concepts of the frse interaction theory /1
—&/ are selected differently. As in region 2, the importance of individual Cartesian coord-
inates in region 3 is essentially nonequitable.

For the derivation of equations in the layer next te the wall it is necessary to write
also the expansion for the temperature

TP (Toy+eTg )y Tai= Tty oy Yoo 2g), =1, 3, ... (3.3
The Clapeyron equation of state p = RWpl where R® is the gas comstant, makes it
possible to eliminate from the analysis functions Ty and Ty Dby expressing them in temms
of gquantities appearing only in the expansions of density. These expressions can bas used by
sxamining the specific heat at constant pressure ¢ and the cocefficients of first viscosity
1@ and thermal conductivity &, which are usually assumed dependent on one temperature. For
shortening calculations it is convenient to introduce the ratios g w= plecg and i = k/p%
For the indicated thermodynamic functions the following expansions:
k. , .
MO =AD AP e + .., g= @b egm e )y A= (T Sm ) (3.4}
P ~
where iy Ty Y2 Zs are the arguments of functions My, gars 72 (0 = 1.2, .. are valid.

Introducing formulas (3.1) together with the asymptotic sequengies (3.2)— (3.4) in the
system of Navier— Stokes equations, we obtain the usual Prandtl eguations
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Ofm L Opwuy , pavm |, Opmwm g (3.5)
Dt Bz Gy, 9%
P31 (‘%%L—Fu'al‘%l L vy 6 kit +u’sl 6w31)___%§:_‘_ b B ( :(!‘;)7';?')
;’F;sx “+u 1ﬂl~+ ’313—;:‘-':"%1'-:—2-1'“—’ -[};"q:u ais (qu Zg:‘)

for the unsteady three-dimensional boundary layer in an incompressible gas which are satisf-
ied by the principal terms. The difference is, however, in that the perturbation pressure
cannot be taken from the solution of the external flow problem. In the considered here bound-
ary layer both derivatives dpy/dz; and 0dpy/0z; are nonzero. Equations (3.5) must be supple-
mented by the final relations between the thermodynamic coefficients Aul®, g, and Xm and
perturbations of density py; and pressure Py- As usual, the Prandtl number Pr is taken as
the ratio of the Péclet and the Reynolds numbers, i.e. Pr = cp A.(®Vk.,

For the second approximation functions we have

Bpwe 8 (Pauae -+ Psctis) 3 {potm: + pawm) 3 {Pyiom + proum) 1.6
at-, + 0xy + Bys 4 EEN 0 ( )
Bugs
P15y, -+ P dt - leuSIT""‘ + (p.

Psxvssz—- + (P«zvso + paob:n)"— -+ P:uw:sx d +

s 0] Bua_ (@) Gum
(puw,g + p‘nwn) —-— = —;-------—c";:3 T ay3 <}\, A’SS —.—;.)
Ipw
e =0

[ '%'ﬂ?' + Psa %w-& + paiiésy Z?’
patvn 5= + (Ps:vﬁ -+ P;-'U:n) + Psstx az 2 4

6p, 73] 61: o (g) By
(Paatoss + poatsn) = 033 = Fe (1 —_— +?~g T;")
%Pn + G BPM iy P G;?u v 528 Pu + v 4w ?3“ R
ty 1z

Yn 5 2(3:& “_P—' [931 ys (X“ 3¥; + X a{m >+9ua—ﬁ(hx%:‘-)}

which is nothing else but the linearized Prandtl equations for unsteady three-dimensional flows
of compressible gas. The remaining terms in the input system of Navier— Stokes equations af-
fect only the construction of higher approximations. The homogeneity of all equations of
system (3.6) is related to the latter feature. In that system the thermodynamic guantities
A, Agel®), g1, GsrXs1» XAs 2re to be expressed in terms of perturbations of density pPsp P and
pressure py,, pm, Which is achieved by the preliminary substitution of formula (3.3) for temp-
erature into the Clapeyron equation of state,

4. Merging of asymptotic expansions. To effect the merging of the considered
asymptotic seguencies it is necegsary to know the behavior of solution when approaching from
inside the upper and lower boundaries of region 2. Since R, (y) =1 and U, ()~ { ,as ¥y —
formulas (2.6) yield

~

ML~ M)
Prs— 53 52— b 2, 22, 0, 22) — aj’Q J 4.1

M3 an

3 l 5 64, 34,
Uz + e [(M — 1)y =% pﬂ "a':.ﬁ' \ Pu(i'z,E,Zz}dE]"*——a;}—-—-:T'“

324, F 34, ¢ M2 — M2y
Wy + Yo gore > S S P (fe, & 2o} dE — —— g Paz{ls, £, 0, 22) dE + dx;; S M’G dn
] o

—ax

Ugy == — Pgy (L3 235 2}, Doz~ MoPpy; (2, 2. 2,)
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These formulas are valid for any conditions at the plate. The behavior of solution near the
lower boundary of region 2 depends on thermal conditions maintained at the surface in the
stream. We assume for simplicity that the plate is thermally insulated. Denoting by # the
ratic of specific heats, we find that the relations

dfty* 2R, 2 g °
T =0 FE=e— 0P[R T S (R = R 00), Uy = U, (0)

which follow from the Blasius solution /12/ hold at the plate surface. Taking these into ac-
count it is possible to show that as J}—+0 the functions

Puz— Pz {fe, 2ns O, 29) 4.2)

e [ (S 2 | ]
%w%éﬁ'{y‘ngi 4‘5‘:‘? gﬁ!ﬁﬁ—%

¥ ¢ ©
Wi‘i‘;“ [p;;'!*{;):?-g 5 pnd&dt,] )(,,5{”'(’» [*l dg:? ] W—L}dn

— -t

" x
ay® 1-1
gy wr Q [y } Pﬁz f’A
}-‘% ® 3 "“i #3, z (,;g S Pud
—

{%ﬁqulﬁrg @}d&—{ efg’?“}ﬂ : ?Pﬂ(?m& 0, 2;)dt +

=~ 2
—c

[ G758 § [n e 2L { mat]as

@R, s 1 [ aus - P
S JINMNERETM NN § JUpTap—
——

where 4, §, & and t, §,s are the arguments of functions p,; and 4,, respectively, of the
integrands.

It should be noted that in the expression for 4y there is a singularity of the form p, ™%
and in the asymptotic formula for uwyy besides a singularity of order }~' there is, also, a
stronger singularity of the form §®. These singularities are inherent to three~dimension-
al flows, and are absent in respective expansions for the plane-parallel boundary layer with
0/9zy = 0.

Uging the formulag (2.5) for the principal terms of sequencies and the asymptofic expres-
sions (4.1) for the functions of the second approximation in order ¢ obtain the houndary con-
ditions, which must be satisfied in the construction ©f solution in region 1. w®When ¥ —» oo,
then the external variable ¥ 0.  This implies that

: a4

Pnftn 20, 5) = poy i, 22, 2}, v {200, 5 =— -5;f'- {4.3)

X

uny (fy 21 0, 31) == — pay (tg, 23y 20)y w11 (F1) 21, D4 20) ==—--— S pay (hy 8, 20) A
-—
011 {8y, T1s Oh 2a) = M2pyy (fys Tpe 2a)

where only the first two conditions are independent, the remaining exactly coinvide with the
second, third, and fifth equaticns of system (1.5}, and are to be defined in the plane y; = 0.

Moreover, the perturbations of pregsure, transverse and lateral components of the veloc-
ity vector we have in the second approximation the relations

N )

0.1 J.1
P1a (P 71 0, 20) = pas {fa: 20, 0, 20) iy e : .-il .4

dny  Pralts 21, 002y) 5= —~ 9t,  or

s T . 324, ¢ ML — MZ0n 2 ¥ ¢ "
i ltn 21, 0, 51} = e oe S Pra{tn & Oy ) B8+ ooy g i) a0+ o S 3 Praifs, SizeydEdl
-k bl N

-

of which, again, only the first two are independent. The last of conditions (4.4) is readily
reduced to the form
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Xy

1 ("’2 u
Wye (f;, Xy, 0, 31) L -~ *21— \ P (f}, E, {7 21) db "*w;‘;' '\ § Pry (th %7 Gy Zx) d&d;

- -

which follows from the fifth of Egs.(1.8) considered in the plane ¥ == 0. The boundary con-
ditions for perturbations of density and the velocity vector longitudinal component cannot be
derived in the second approximation for ¥ = 0, using the asymptotic expressions (4.1}. To
do this it is necessary to know the third approximation terms in the solution for region 2,
which are not considered in the present analysis. For plane-parallel motions of gas in the
y; = 0 plane we have formulas (1.6) or (1.7) depending on whether the Mach number at infin-
ity exceeds unity or remains below it. Taking into account the above relations, we come to
the immediate conclusion that the boundary conditions for y; =0 for the principal terms of
solution in region 1 can be expressed in terms of function 4;{&. o) = A, {4, z,) if 88z, =
8/9z, = 0. In that case the boundary conditions for second approximation terms will alse
contain function Ay (ly, 2) = 4, (4, 2,). If, however, the velocity field in the boundary layer
has a three~dimensional structure, then in the relation

Xy
ra {fss 21, U, 23) = S d——‘"g—"-—'*p“ &, ::1 Sh) g
it is not possible to get rid of the normal derivative of the excess pressure by exchanging
it for the function itself.

Let us now carry out the merging of expansions which represent the asymptotic form of
solutions in regions 2 and 3. Reverting to formulas (2.5) and expressions (4.2), we obtain
limit conditions which are to be satisfied by the parameters of gas in the thin layer next
to the wall, If ¥ -+ , then the internal variable y;-~ o and the sought guantities are

Xz
a0 &b 4 @ (4.5}
Psx {tg. T3, 35) = Py (i, Z3, Zp)y Py~ HyS e 2 d; - ‘41 + [%R" _L{L} e .\ § Pudbdl

wm—»m[yﬁo dU“ ]ﬂ 2 E PudE“i*[yﬁR" Uy ]‘ g {fh(im;. zz)%i':l— “%g"—’g% S;PndE‘i“

{%ggi]‘i7ﬁ§;;‘jszxd§}§§

where 1, §, 2, are the arguments of function py in the integrand.
The limit condition for the velocity vector component along the normal to the body sur-
face is usually omitted. In this case it can be written in the form

U 84 84 84, dUS U 11l 8
bt G~ g G [ G [ 5*”““”%‘*}5’%}

and is automatically satisfied, when conditions (4.5) for pressure perturbations, density,
and velocity vector components lying in a plane tangent to the body surface are satisfied.
Indeed, by substituting the asymptotics of all first approximation functions which determine
the structure of the viscous layer next to the wall, into Egs. (3.5}, we can verify the valid-
ity of the sbove statement, since this substitution results in a system of identities.

The boundary conditions for second approximation Functions ave

Pag (B3, Taq 25) = Py, (1, 2,5, 0, )y Py =0 4.8)

ay.

- -0

vie = G e + M2 [ 3 5 Pea (ta, B 22) d3 4L | S [ — [n ) I~ 55 an}
&

- bd(}e 8
Uy =~ [zach Pl Sp«z{&,ﬁ, 0,2} d

Inserting into the second of egqualities (4.2) for Iy the supplementary term proportion-
al to ¥: , we obtain the limit condition

v — gy LS s [ By 2 \ Pt bz dg] M e L —]an}
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for the transverse velocity vector component. As in the first approximation, it is automatic-
ally satisfied, if the conditions for perturbations of pressure, density, and velocity vector
components in the plane tangent to the body surface are assumed satisfied. This can be read-
ily proved by substituting the asymptotic expressions for the quantities Das. Die. Ugs. Uggy 'y to-
gether with similar expressions for functions Pair Pawy Uy, Vagy Wy into the linear equations
(3.6), since each of them becomes an identity.

Thus the boundary condition for the velocity vector component normal to the plate can be
rejected, when integrating the system of equations for the viscous layer next to the wall.
Formally this appears to be exactly as in the classical Prandtl theory. However the reasons
for the omission of that boundary condition are exactly opposite in the two cases, viz., when
the self-induced pressure is taken into account it follows from the remaining boundary condi-
tions imposed as y,— oo, while in the conventional theory of the boundary layer it is super-
fluous making the respective boundary value problem insoluble.

Note that the term e in the expansion for density was not taken at all into considera-
tion in the process of merging the solutions for regions 2 and 3. This is reasonable, since
when y — 0 the contribution due to it is proportional to et, it is sufficient to specify
the gas density throughout the thin layer next to the wall with an accuracy to terms of order

. As regards terms with u»: in the expansion of the velocity vector lateral component, its
singular values proportional to 4. and ™! were used in the merging with the solution in
region 3, and only the regular residual yielding a contribution of order « was omitted.

5. Boundary value problems. Below, we assume that the specific heat at constant pre-
ssure is constant and the coefficients of viscosity and thermal conductivity conform to
Chapman's linear laws

MR = o' T, kike = ¢T/T ., ¢ = const

and set the Prandtl number equal unity. Then the ratio 7.7, of wall and oncoming stream
temperatures is obtained from the Crocco relation /12/
Tu/Te =1 - (% — 1) M¥2

As previously indicated, in the case of a therrgally insulated plate the derivative
dR/dy, = 0. From this we conclude, that p/pe—> He® as z—+ — oo not only in the first but
also in the second approximation. Similarly p/pe-~> R’ as ys3— -+ co in the second formulas
of (4.5) and (4.6) obtained by merging solutions for regions 2 and 3. Hence we take as the
golution
Pa1 (B3, T3+ Uae 23) = Ry’, gy (ty, T3y War 25) = 0, Par (L3 Zgy 23) == Pay by Tas 1) P (tas Tas 23) = Pya (tay Tay 0. 24)

In the considered here case the last of equations appearing in systems (3.5) and (3.6) be-
come identities. Then for first approximation functions in region 3 we have

Dug | S S o I g -
Bxy dys ' 03 o Oy
o { gy duy, Lo Guy o dun\___ Gpm ¢ Gfug
Eo ( dty 31z, + ta 93 T ¥a oty :) dzy +-R:8 dYya?
of gy By, dum ] 6w“) _ 2pm c Gy
R (G + wn gt ol Fwa == 5 T RF G
and second approximation functions are determined using the system
dug: | Oy By O pgs 0
Eratuty el utasl e (5.2)
of Ougs Bty ity sy duyy Juge Oy ) [ ¢ Pug .
Ry ( 5, T Un g M r -+ Par = -+ vz s gy g g ) = P B B
- . 3% g
7 Bugs Fung gy Furgy Gy i ST L }z LB L e Tl
Re°k*ng—+ ﬁ«m—g;;*f‘ usz?;x—-f‘ l’sl“‘gg;‘*"’ﬁ 3> 3175, T e g 3z, + R oyt

System (5.1) is formed of usual Prandtl equations for an unsteady three~-dimensional bound-
ary layer in an incompressible fluid. BSystem (5.2) consists of Prandtl linearized eguations
which define unsteady three-dimensional incompressible flows. In both systems pressure per-
turbations pg and P must be determined and are not obtained from solutions of the external

flow, hence for a plate py 0 and py, *=0.
Let us now carry out the similarity transformation
Mot — 1] =8 T, T«=T, (5.3}
b =ty = Iy = ¢ AT G ATt
Ty =2y =Ty = c"'?»"“é"’*Tf,’ x”
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"= oF AVt Nz y . Y= & 4}\,1,,8-:,,T0;l»:y»

Iy = 3y = By == A T gt

Ugy -+ Bligy = ¢AET T (ugy” - g,”)

B 4 ey = R ST oy b o), By 4 D = A T (U b ey

gy -+ By = ¢ RETT (i g P b gpp = R8T oy + e}
Pzx F BPag == CRYETA (py ™ ok gpy ™), pay b epyy = RS Pa” + epg")
Ay + ey = ST (A oAy

where the constant 2 = (,3321 is determined using dU,Ydy, = Ac"#T,? and is calculated using
the Blasius solution of an unperturbed boundary layer. This transformation enables us to ex-
clude from the formulation of the problem the dependence of principal terms of sequencies on
constants ¢ and R, = Ty}, while the remainder AMf.?-- 1 appears only in relations for the
external region of the stream.

Let us begin by formulating the boundary value problem for first approximation functionms.
The first and fourth equations of system (1.5), expressed in new variables, at which for
simplicity double primes have been omitted, assume the canonical form

— Fpy L By - 2
Flh é;’f‘ FIML -1 P =0, o' =—|AL 1] f}.f?u &Ly dE 5.4

S

where the upper sign at the derivative &%p,,'/d2® applies when the oncoming stream is super-
sonic, and the lower when it is subsonic at infinity.
The boundary condition for y = 0 are derived from the first two of equalities (4.3)

95;

' = (L2, 0), v =] e (5.5}

which are independent. As previously noted, the remaining relation of (4.3} fellow from re-
spective equations of system (1.5) considered in the y =0 plane. It is, conseguently, pos-
sible to omit all supplementary equations and boundary conditions when formulating the bound-
ary value problem for y' = 0.
The remaining boundary conditions are formulated as limit conditions., Namely, as & -» 00
and y — oo we have
=0 v —~0 {5.8)

Substituting expressions (5.3} into system (5.1) and omitting the double primes at the
riewly introduced variables, we obtain equation in the canonical form

g dugy 0“ 31 Opa; . 0 Oday "".u dug ]}“ Py,
el e A T e (), - ) - u«1 L e gy 5 i gy e e SO DAL - (5.7
gy Gugy Hu By Siwrgy é‘grg; 35&31
T Mgt Um—gs T¥a g ==t

for which we have the obvious boundary conditions when y = 0
Ugy = 0» Vg = 0, Wyy w== 0
The remaining boundary conditions are formulated here also as limiting. As T~ weso

(5.8}

Ugy > ¥, wyp— D, Py > 0 (5.9}
Moreover, on the basis of formulas {4.5) we conclude that as y—+o
r §
Pa— P (2, 2, 2), un—-—y—»A;(i,x,z)-f-—i—::z X g Sp;;"’(t,g,z)dgd; (5.10)

e 0, s O

1.2 ¢ g : 8 2, ] ¢ ™
iﬁg}‘?—*}m £ S i}{i,g,z}db-i-—iﬂg {A;{f;,,.’o’} Pn ;? 88; §P§;){§s§sz}d§+“§_‘g; S i){t,g,z)ég}g‘

Systems (5.4) and (5.7) must be integrated jointly. Linking of their solutions is achiev-
ed with the use of the arbitrary functions pa™(f, z,7) and A4,(t.z,7) which appear in boundary
conditions (5.5) and (5.10), and are to be determined,

Attention had been already drawn to the fact of the impossibility of formulation of bound-
ary conditions for a three-dimensicnal stream in terms of function 4. (.23 only. The wnavoid-
able consequence of the absence of simple expressions for gas parameters in region 1 is the
impossibility of separating in the general problem that of the external flow of gas from the
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problem of the viscous layer next to the wall. The introduction of time in the theory of
steady free interaction of the plane~pavallel boundary layer /1—&/ d&id not result in a fund-
amental complication of boundary value problems bDecause the eguations that define the flow in
regions 1 and 2 do not contain in the first approximation derivativeg with respect tc :. On
the contraxy, as shown by the above zeasoning, boundspy value problems on free interyaction
become cunsiderably more complex when the third space variable iz taken into account. Ag
regards the stipulation that perturbations must be damped upstream, its fulfillmant ls ensur-
ed by conditions (5.6) and {(3.9).

Transforms {5,3) wvirtually sxpress the law of aimilarity for the principal terms of gas
parameters in the unsteady three-dimengivnal boupdary laver, singe neither the systems of Egs.
(5.4} and {5.7}, nor the boundary conditions {5.5}, (5.8), and (5.8}~ (5.10! vontajan the
quantities BRe, %2 To. The same flow modes can, thus, ocfcur at varicus values of the above
constants, and the straam propertiag are determined by the input data of the problem. It is,
however, impossible to sliminate the dependence of the dimensioniess characteristics of the
three-dimensional boundary layer on the number 3¥,. The latter is in complete agrsamentwith
the Prandtlw-Glauert rule which established the length scale contragtion in the lateral direc=-
tion of the external stream, when the linear approximation is used in its study /13/. The
gimilar contraction of th¢ measurements scale for the region next tg the wall ig produced dif-
ferently. The similarity laws for tha plane-parallel motion of g v = dd: =0 ctntain in
their fermulation alse the Mach number at infinity /3,6,11/. In fact the term | ML — 1% is
common in the expressicn which obtaing by the substitufion of the expression in (5.5} for fun-
ction Y into the left~hand side of the second of Eqg8. (5.4} considered in the plane ¥ =¢.

Let us now turn to gsecond approximation functions. Omitting again the double Primes at
variables transformed according to formulas (5.3), we writs the first and fourth of eguations
of system {L.8} as

N agzn - P Y Foy (3.1
Tt e “i"al =2 NS ey .1

T x ;
AL RT, §% g

ro' = e § e BV I e § e (3
—r — —%

where the ugyer sign 18 for a supersonic oncoming styeam and the lower for a subsenic one.
When y' = the boundary conditions are obtained from the first two of equalities (4.4).
Before writing these down it is useful to calculate the integrals in the asymptotic formulas
£4.1) and (4.2). In conformity with the Blasius solntion for the boundary layer on a thermal~
1y insulated plate we have /12/
£ My
————————— T

e dn= (2 Toly,  3a=1.688 (5.12)

ES {oe
Y LN S O SO SR S 20/ | To? g v Iy (To— 1} A S
S{M e [y; y: ] m-wﬁfg}d!}_ é{ﬂeiﬁm f}(fﬁ s () {ToAe 2 (T Pl Bews 3063
where the small angle sign over the improper divergent integral denctes it fini¥e part inthe
#adamard sense 7147, Wa have
az 41

ity G1sy Pl » 7y B
prat = g (£, 2, 0, 7) — 2 ARV BT y  talEs e 8 e g 'T;z—at’ (5.13)

Tha yemaining boundary conditions (4.4} are omitted, since they follow from the respect-
ive egquations of system (1.8} by setiing in it y =8
The limit conditions as z— — and 7 — -  are
I 0
For a viscous flow in the region close to the wall system (5.21) consists of lingarized
Prandtl eguations. It is thus clear that in the trangformed variables with omitted double
primes they assume thé tanonical form

{5.148)

dﬁu -gw =1, mmmﬁ {5. 15}
duse Buigy ‘% LN gy Bppy | Py,
F W gt B g + vy R w2 B e TR

e i G, di day Ipg; |, GRury
i ;;%*st“ s‘%—l«‘,z: é;s -+ Usz 6;‘ “é‘“i?fai*“gfg“'{'wn—éﬁ*mm??—;ﬁﬂ
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which is free of any parameters. The boundary conditions of flow U3, = 0, vy = 0, wy, = 0 when
y =0 and the limit conditions ug — 0, Wy, —0,p;;—0 as z-+»-— 00 also do not contain any
parameters. It is not so in the case of limit conditions as y— . Taking into considera-
tion the merging requirements (4.6) we conclude that
Paz = py'™ (2, 2, 0, 2) (5.16)
o . . & ¢ ¢
o= Az (1,2,2) + 250 WY (b — (U — T A X AR (0 n 2+ § (Pt ot

- — —

u@‘.‘""“%’ba? S p:‘l(tvgvoyz)dg
where the coefficient A, is defined by the second of formulas (5.12). The equations of syst-
ems (5.11) and (5.15) must be simultaneous integrated. Their solutions are linked by the arbit-
rary functions p,.™(t. z,0,z) and A,(t.Z,Z) contained in the boundary conditions (5.13) and
(5.16). The limit conditions (5.14) must be supplemented by the conditions of damping upstream
at infinity of gas parameters in the region next to the wall and the conditions at y=0 on
the plate. The correction terms of input expansions substantially depend on constants M.,
¢, » and on T,, even when these relate to a plane-parallel layer.

We present the following two concluding remarks. First, in the developed theory of free
interaction of an unsteady three-dimensional boundary layer with the external stream the
characteristic dimensions in all directions on the surface in the stream are of comparable
magnitude. This implies that separation zones appear in longitudinal as well as in transverse
directions at distances of the order of €L, When the surface under the boundary layer is
rough, separation bubbles of the indicated scale can be generated in the boundary layer region
next to such surface. The overall pattern of the stream is then similar to that which occurs
at the bottom of a vessel at the beginning of boiling of water in it, although the size of
bubbles is evidently different. When the separation is total over the region of the size of
characteristic dimensions of the body, the shape of the separation line can substantially vary
at distances of the order of ¢3L.

The second remark relates to the shape of the surface under the stream, which, strictly,
speaking, was assumed above to be simply a plane plate. 1In fact, the surface of the body can
be of any shape, provided that the characteristic dimensions remain of the order of L. All
reasoning remains valid, except functions Ru(y), Ue(y) and M. (y) are to be defined not by the
self-similar Blasius solution , but by the data obtained by the preliminary integration of
Prandtl equations with appropriately formulated boundary conditions. Integration of equations
of the boundary layer defines the initial stream on sections of the order of L, where the
free interaction process takes place. It is for this reason the plane tangent to the body
surface was occasionally mentioned instead of the plate.
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